Eulerian Multiphase (EMP) Bibliography

[426]
Antal, S. P., Lahey, R. T., and Flaherty, J. E. 1991. “Analysis of phase distribution in fully developed laminar bubbly two-phase flow”, Int. J. Multiphase Flow, 17, pp. 635 – 652.

[427]
Arastoopour, H., Pakdel, P., and Adewumi, M. 1990. “Hydrodynamic analysis of dilute gas-solids flow in a vertical pipe”, Powder Technology, 62, pp. 163 – 170.

[428]
Armenante, P. M., Kirwan, D. J., 1989. "Mass transfer to microparticles in agitated systems", Chemical Engineering Science, 44, pp. 2781 – 2796.

[429]
Atapattu, D.D., Chhabra, R.P., and Uhlherr, P.H.T. 1995. “Creeping sphere motion in Herschel-Bulkley fluids: Flow field and drag”, Journal of Non-Newtonian Fluid Mechanics, 59, pp. 245 – 265.

[430]
Auton, T.R., Hunt, J.C.R., and Prud’homme, M. 1988. “The force exerted on a body in inviscid unsteady non-uniform rotational flow”, J. Fluid Mech., 197, pp. 241 – 257.

[431]
Balachandar S. and Eaton J. K. 2010. “Turbulent dispersed multiphase flow”, Annu. Rev. Fluid Mech., 42, pp 111 – 133.

[432]
Bartolomei G.C. and Chanturiya V.M. 1967. “Experimental study of true void fraction when boiling subcooled water in vertical tubes”, Thermal Engineering, 14, pp 123 – 128.

[433]
Benyahia, S., Syamlal, M. and O’Brien, T.J. Accesses Jan 2012. “Summary of MFIX equations 2012-1”, from URL https://mfix.netl.doe.gov/documentation/MFIXEquations2012-1.pdf

[434]
Borissova, A., 2009. "General systems modeling of multi-phase batch crystallization from solution", Chemical Engineering and Processing: Process Intensification 48, 268 – 278.

[435]
Bouillard, J., Lyczkowski, R., and Gidaspow, D. 1989. “Porosity Distributions in a Fluidized Bed with an Immersed Obstacle”, AIChE J 35(6), pp. 908 – 922.

[436]
Bozzano, G., and Dente, M. 2001. “Shape and terminal velocity of single bubble motion: a novel approach”, Computers and Chemical Engineering, 25, pp. 571 – 576.

[437]
Burns, A. D., Frank, T., Hamill, I., and Shi, J-M. 2004. “The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows”, Technical report, Internation Conference on Multiphase Flow.

[438]
Casenave, C., Dochain, D., Alvarez, G., Arellano, M., Benkhelifa, H., Leducq, D., 2014. "Model identification and reduction for the control of an ice cream crystallization process", Chemical Engineering Science 119, 274 - 287.

[439]
Cerne, G., Petelinb, S., Tiselja, I., 2001, "Coupling of the Interface Tracking and the Two-Fluid Models for the Simulation of Incompressible Two-Phase Flow" Journal of Computational Physics, Volume 171, Issue 2, pp 776 – 804

[440]
Chhabra, R.P., 1992. “Bubbles, Drops and Particles in Non-Newtonian Fluids”, CRC Press.

[441]
Cole R. 1960. “A photographic study of pool boiling in the region of the critical heat flux”, AIChE J., 6, pp. 533 – 542.

[442]
Cook, T.L. and Harlow, F.L. 1984. “Virtual mass in multiphase flow”, Int. J. Multiphase Flow, 10, pp. 691 – 696.

[443]
Coste, P. 2013, "A Large Interface Model for Two-Phase CFD", Nuclear Engineering and Design, 255, pp. 38 – 50.

[444]
Coulaloglou, C.A. and Tavlarides, L.L., 1977, "Description of interaction processes in agitated liquid-liquid dispersions", Chemical Engineering Science, 32, pp. 1289 – 1297.

[445]
Cristini, V., Guido, S., Alfani, A., Blawzdziewicz, J., Loewenberg, M., 2003, " Drop breakup and fragment size distribution in shear flow", Journal of Rheology, 47, pp. 1283 - 1298.

[446]
Darbouret, M., Cournil, M. and Herri, J. M. 2005. "Rheological study of an hydrate slurry for air conditioning application", Fifth International Conference on Gas Hydrates (ICGH 5), Trondheim, Norway, page 2005.

[447]
Del Valle M.V.H. and Kenning D.B.R. 1985. “Subcooled flow boiling at high heat flux”, Int. J. Heat Mass Transfer, 28, pp. 1907 – 1920.

[448]
Deutsch, E., and Simonin, O. 1991. "Large eddy simulation applied to the modelling of particulate transport coefficients in turbulent two-phase flows", Proc. of the Eighth Symposium on Turbulent Shear Flows, Munich, Germany, pp 10-1-1 to 10-1-6.

[449]
Deutsch,E., and Simonin, O. 1991. “Large eddy simulation applied to the motion of particles in stationary homogeneous fluid turbulence”, ASME FED, 110:35 – 42.

[450]
Di Felice, R. 1994. "The voidage functions for fluid-particle interaction system" Intl. J. Multiphase Flow, 20(1):153 – 159.

[451]
Ding, J. and Gidaspow, D. 1990. “A bubbling fluidisation model using kinetic theory of granular flow”, AIChE Journal, 36(4), pp. 523 – 538.

[452]
Drew, D. A., 2001. “A turbulent dispersion model for particles or bubbles”, J. Engineering Mathematics, 41:259 – 274, 2001.

[453]
Drew, D.A., 1983. "Mathematical Modeling Of Two-Phase Flow", Annual Review Of Fluid Mechanics, 15, pp. 261-291.

[454]
Drew, D. A. and Passman, S. "Theory Of Multicomponent Fluids", Springer, New York, 1998.

[455]
Elghobashi, S. E., and Abou-Arab, T. W., 1983. “A two-equation turbulence model for two-phase flows”, Phys. Fluids, 26(4):931 – 938.

[456]
Eskin, D., Taylor, S. D., and Yang, D., 2017. "Modeling of droplet dispersion in a turbulent Taylor-Couette flow", Chemical Engineering Science 161, pp. 36 – 47.

[457]
Esmaili, E. and Mahinpey, N. 2011. “Adjustment of drag coefficient correlations in three dimensional cfd simulation of gas-solid bubbling fluidized bed”, Advances in Engineering Software, 42, pp. 375 – 386.

[458]
Fox, R. O., 2003. "Computational models for turbulent reacting flows" Cambridge University Press.

[459]
Fox, R.O. 2014. "On multiphase turbulence models for collisional fluid-particle flows", J. Fluid Mech. Vol. 742. pp 368 – 424.

[460]
Fox, R. "On the relationship between Lagrangian micromixing models and computational fluid dynamics" Chemical Engineering and Processing. 37, 521535.

[461]
Frick, A.M. and Thompson, B.E. 1982. “Settling Velocities in Batch Sedimentation”, Oak Ridge National Laboratory, ORNL/MIT358

[462]
Gera, D., Syamlal, M., and O’Brien, T.J. 2002. Int. J. Multiphase flow, 30(4):419 – 428.

[463]
Geldart, D. 1973. “ Types of gas fluidization”, Powder Technology, 7, pp. 285-292.

[464]
Gelfand, B. 1996. “ Droplet breakup phenomena in ows with velocity lag. ”, Progress in Energy and Combustion Science, 22, pp. 201-265.

[465]
Gerber, A. G. 2008. “ Inhomogeneous Multifluid Model for Prediction of Nonequilibrium Phase Transition and Droplet Dynamics”, Journal of Fluids Engineering, 130.

[466]
Gidaspow, G. 1994. “Multiphase Flow and Fluidization - Continuum and Kinetic Theory Descriptions”, Academic Press.

[467]
Gilman, L.A., 2014. "Development of a general purpose subgrid wall boiling model from improved physical understanding for use in computational fluid dynamics", PhD thesis, MIT.

[468]
Gosman, A.D., Issa, R.I., Lekakou, C., Looney, M.K., and Politis, S. 1992. “Multidimensional modelling of turbulent two-phase flows in stirred vessels”, AIChE Journal, 38(12), pp. 1946 – 1956.

[469]
Grace, J.R, Leckner, B., Zhu, J., Cheng, J. 2006. “Fluidized Beds”, Multiphase Flow Handbook.

[470]
Guildenbecher, D. R., D.R., Lopez-Rivera, C., and Sojka, P. 2009. “ Secondary atomization”, Experiments in Fluids, 46, pp. 371-402.

[471]
Gyarmathy, G. 1962. “ Grundlagen einer Theorie der Nassdampfturbine”, Ph.D. dissertation, No. 3221. ETH Zurich.

[472]
Hanimann L., Mangani L., Darwish M., Casartelli E., and Vogt M.T, 2021. “A Consistent and Implicit Rhie–Chow Interpolation for Drag Forces in Coupled Multiphase Solvers”, Int. J. Turbomach. Propuls. Power, 7.

[473]
Hibiki T. and Ishii M., 2003. “Active nucleation site number density in boiling systems”, Int. J. Heat Mass Transfer, 46, pp. 2587 – 2601.

[474]
Hill, D.P. 1998. “The Computer Simulation of Dispersed Two Phase Flows”, Ph.D. dissertation, Imperial College, London.

[475]
Hinze, J. O., 1959. Turbulence.

[476]
Höhne, T. and Porombka, P. 2018. "Modelling horizontal two-phase flows using generalized models", Annals of Nuclear Energy 111:311 – 316.

[477]
Hounslow, M. J., Ryall, R. L., Marshall, V. R., 1988. A discretized population balance for nucleation, growth, and aggregation. AIChE Journal 34, 1821 – 1832.

[478]
Hughes E. D. and Duffey R. B., 1991. "Direct contact condensation and momentum-transfer in turbulent separated flows", Int. J. Multiphase Flow, 17, 599 – 619.

[479]
Ishii, M. and Mishima, K. 1984. “Two-fluid model and hydrodynamic constitutive relations”, Nuclear Engineering Design, 82, pp. 107 – 126.

[480]
Ishii, M., "Thermo-Fluid Dynamic, Theory Of Two-Phase", Eyrolles, 1975.

[481]
Ishii, M. and Zuber, N. 1979. “Drag Coefficient and Relative Velocity in Bubbly, Droplet and Particulate Flows,” AiChe. Journal, 25, pp. 843 – 855.

[482]
Issa, R. I., and Oliveira, P. J. 1994. “Numerical prediction of phase separation in two-phase flow through T-junctions”, Computers Fluids, 23(2), pp. 347 – 372.

[483]
Johnson, P.C., and Jackson, R. 1987. “Frictional-collisional constitutive relations for granular materials, with application to plane shearing”, J. Fluid Mech., 176, pp. 67 – 93.

[484]
Kamp, A., Chesters, A., Colin, C., and Fabre, J., 2001. "Bubble coalescence in turbulent flows: A mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow", International Journal of Multiphase Flow, 27, pp. 1363 – 1396.

[485]
Karnik, A., Ajay, M.R., and Tandon, M. 2013. "Numerical investigation of the hydrodynamics of cylindrical fluidized bed" The 14th Intl. Conf. on Fluidization - From Fundamentals to Products

[486]
Keramat, F. 2010. "Numerical modeling and investigation of unsteady phenomena in condensing flows of industrial steam turbines" PhD thesis, Faculty of Mechanical Engineering, Ruhr University, Bochum.

[487]
Kocamustafaogullari G., 1983. “Pressure dependence of bubble departure diameter for water”, Int. Comm. Heat Mass Transfer, 10, pp. 501 – 509.

[488]
Kocamustafaogullari G., Smits, G., and Razi, R. 1994. “Maximum and mean droplet sizes in annular two-phase flow.”, Int. Journal of Heat and Mass Transfer, 37, pp. 955 – 965.

[489]
Koch, D. L. 1990. "Kinetic Theory for a Monodisperse Gas-Solid Suspension" Phys. Fluids A, 2, 1711.

[490]
Koehler, S. A., Hilgenfeldt, S., Stone, H. A., 2000. "A generalized view of foam drainage: experiment and theory", Langmuir 16, 6327 – 6341.

[491 492]
Krieger, I.M., and Dougherty, T.J. 1959. “A mechanism for non-Newtonian flow in suspensions of rigid spheres” Transactions of the Society of Rheology, 3, pp. 137 – 152.

[491 492]
Kuboi, R., Komasawa, I., Otake, T., 1972. “Behavior of dispersed particles in turbulent liquid” Journal of Chemical Engineering of Japan, 5, pp. 349 – 355.

[493]
Kumar, S., Ramkrishna, D., 1996. On the solution of population balance equations by discretization-I. A fixed pivot technique. Chemical Engineering Science 51, 1311 - 1332.

[494]
Kurul, N. and Podowski, M.Z. 1990. “Multidimensional effects in sub-cooled boiling”, Proceedings of the Ninth Heat Transfer Conference, Jerusalem.

[495]
Lakehal, M., Smith. 2002. "Large-eddy simulation of bubbly turbulent shear flows" Journal of Turbulence, 3(25).

[496]
Lamb, H., 1945. Hydrodynamics, Dover Publications, New York, NY, USA.

[497]
Lance, M., and Bateille, J., 1991. “Turbulence in the liquid phase of a uniform bubbly air-water flow”, J. Fluid Mech., 222, pp. 95 – 118.

[498]
Lance, M., and Lopez De Bertodano, M., 1994. “Two-Phase Flow Fundamentals”, Multiphase Science and Technology., 8, pp. 69– 124.

[499]
Lemmert, M. and Chawla, J.M. 1977. “Influence of flow velocity on surface boiling heat transfer coefficient”, Heat Transfer in Boiling, E. Hahne and U. Grigull, Eds., Academic Press and Hemisphere, New York, NY, USA.

[500]
Leong, Y. K., Scales, P. J., Healy, T. W. and Boger, D. V. 1995. "Effect of particle size on colloidal zirconia rheology at the isoelectric point", J. Am. Ceram. Soc., 78(8):2209.

[501]
Levich, V. G., 1962. "Physiochemical hydrodynamics", Prentice-Hall.

[502]
Li, Q., Jiao, Y., Avramova, M., Chen, P., Yu, J., Chen, J., Hou, J., 2018. "Development, verification and application of a new model for active nucleation site density in boiling systems", Nuclear Engineering and Desing, 328, pp. 1-9.

[503]
Liao, Y., and Lucas, D., 2010. "A literature review on mechanisms and models for the coalescence process of fluid particles", Chemical Engineering Science, 65, pp. 2851 –2864.

[504]
Lo S., 1996. "Application of the MUSIG model to bubbly flows", AEAT-1096, AEA Technology, 230: 8216 – 8246.

[505]
Lo, S. and Rao, P. 2007. “Modelling of droplet breakup and coalescence in an oil-water pipeline”, 6th Int. Conf. Multiphase Flow, ICMF 2007, Leipzig, Germany.

[506]
Lo, S., and Tomasello, A., 2010, "Recent progress in CFD modelling of multiphase flow in horizontal and near-horizontal pipes", 7th North America Multiphase Technology, Banff, Canada.

[507]
Lo, S. and Zhang, D. 2009. “Modelling of Break-up and Coalescence in Bubbly Two-Phase Flows”, J. Comp. Multiphase Flows, 1(1), pp. 23 – 38.

[508]
Lockett, M.J. and Kirkpatrick R.D. 1975. “Ideal Bubbly Flow and Actual Flow in Bubble Columns”, Trans. Inst. Chem. Engrs, 53, pp. 267 – 273.

[509]
Lu, B., Wang, W. and Li, J. 2011. "Eulerian simulation of gas-solid flows with particles of Geldart groups A,B and D using EMMS based meso-scale model ", Chem. Eng. Sci.66. pp. 4624-4635

[510]
Louge, M. Y., Mastorakos, E., and Jenkins, J. T., 1991. "The Role of Particle Collisions in Pneumatic Transport" J. Fluid Mech., 231, 345.

[511]
Lubchenko, N., Magolan, B., Sugrue, R., Baglietto, E., 2018, "A more fundamental wall lubrication force from turbulent dispersion regularization for multiphase CFD applications", Int. J. Multiphase Flow, 98, pp. 36-44.

[512]
Lun, C.K.K. Savage, D.J. Jefferey, S.B. and Chepurniy, N. 1984. “Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield”, Journal of Fluid Mechanics, 140, pp. 223 – 256.

[513]
Luo, H., 1993. "Coalescence, breakup and liquid circulation in bubble column reactors", PhD thesis, Norges Tekniske Hoegskole, Trondheim.

[514]
Ma, G., Fengyyan, S., Kirby, J. T., 2011. "A polydisperse two-fluid model for surf zone bubble simulation" Journal of Geophysical Research., Vol. 116.

[515]
Martinez-Bazan, C., Rodriguez-Rodriguez, J., Deane, G. B., Montanes, J. L., Lasheras, J. C., 2010. "Considerations on bubble fragmentation models" J. Fluid Mech., 661, pp 159 – 177.

[516]
Mason, T. G. 1999. "New fundamental concepts in emulsion rheology", Current Opinion in Colloid and Interface Science, 4:231 – 238.

[517]
Menter, F.R., and Egorov, Y., 2004 "Re-visiting the turbulent scale equation", Proc. IUTAM Symp. One Hundred Years of Boundary Layer Research, Göttingen, Springer.

[518]
Merkus, H.G., 2009 "Particle Size Measurements: Fundamentals, Practice, Quality", Particle Technology Series, Springer.

[519]
Mewis, J., and Wagner, N. J. 2012. "Colloidal Suspension Rheology", Cambridge University Press.

[520]
Miller, R.M., Singh, J.P., and Morris, J.F. 2009. "Suspension flow modeling for general geometries", Chemical Engineering Science, 64 (22) pp. 4597 – 4610

[521]
Morris, J.F. and Boulay, F. 1999. "Curvilinear flows of noncolloidal suspensions: The role of normal stresses", Journal of Rheology, 43, p. 1213.

[522]
Mullin, J., 2001. "Crystallization" (Fourth Edition). Butterworth-Heinemann, Oxford.

[523]
C. W. Hirt and B. D. Nichols. 1981. "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries", J. Comput. Phys., 39, pp. 201-225.

[524]
O’Rourke, P., Bracco, F. 1980. "Modeling of Drop Interactions in Thick Sprays and a Comparison with Experiments", Proc. of the Institution of Mechanical Engineers. pp. 101–106.

[525]
Pal, R. and Rhodes, E. 1989. "Viscosity/concentration relationships for emulsions", J. Rheol., 33, p. 1021.

[526]
Pandey, A., 2014. "Numerical Modelling of Non-Equilibrium Condensing Steam Flows", Masters Thesis, TU Delft.

[527]
Pangarkar, V. G., Yawalkar, A. A., Sharma, M. M., Beenackers, A. A. C. M., 2002. "Particle-liquid mass transfer coefficient in two-/three-phase stirred tank reactors", Industrial & Engineering Chemistry Research 41, 4141 - 4167.

[528]
Podowski, M.Z. and Podowski, R.M. 2009. “Mechanistic Multidimensional Modeling of Forced Convection Boiling Heat Transfer”, Science and Technology of Nuclear Installations, Article ID 387020, 10 pages.

[529]
Politis, S., Issa, R. I., Looney, M. K., Gosman, A. D., Lekakou, C. 1992. “Multidimensional modeling of turbulent two-phase flows in stirred vessels“, AlChE Journal, 38(12), pp. 1946 – 1956.

[530]
Rahman, M. S., Ahmed, M., Chen, X. D., 2006. "Freezing-melting process and desalination: I. Review of the state-of-the-art", Separation & Purification Reviews 35, 59 – 96.

[531]
Ramkrishna, D. 2000. "Population balances".Academic Press.

[532]
Ranz, W.E., and Marshall, W.R. 1952. “Evaporation from drops--Part I and II”, Chemical Engineering Progress, 48(3), p. 141

[533]
Richards, L. A., 1931. "Capillary conduction of liquids through porous mediums", Journal of Applied Physics 1, 318 – 333.

[534]
Richardson, J, and Zaki, W. 1954. “Sedimentation and Fluidisation: Part 1”, Trans. Inst. Chem. Engrs, 32, pp. 35 – 53.

[535]
Rider, William J. and Kothe, Douglas B. 1997. "Reconstructing Volume Tracking", J. Comput. Phys., 141, pp. 112 – 152.

[536]
Rusche, H., 2002. Computational fluid dynamics of dispersed two-phase flows at high phase fractions", Technical report, PhD Thesis, Imperial College, University of London.

[537]
Rusche, H., Behzadi, A. and Issa, R. 2004. “Modelling of dispersed bubble and droplet flow at high phase fractions”, Chemical Engineering Science, 59, pp. 759 – 770.

[538]
Rusche, H., and Issa, R. 2000. "The effect of voidage on the drag force on particles, droplets and bubbles in dispersed two-phase flow", Japanese European Two-phase Flow Meeting, Tsukuba, Japan.

[539]
Samuelsberg, A. and Hjertager, B.H. 1996. “Computational Modeling of Gas/Particle Flow in a Riser”, AIChE J, 42(6), p. 1536.

[540]
Sato, Sadatomi, Sekoguchi. 1981. “Momentum and heat transfer in two-phase bubble flow-I”, Int Journal Multiphase Flow, 7, pp. 167 – 177.

[541]
Sato, Sadatomi, Sekoguchi. 1981. “Momentum and heat transfer in two-phase bubble flow-II”, Int Journal Multiphase Flow, 7, pp. 169 – 190.

[542]
Schaeffer, G. 1987. “Instability in the evolution equations describing incompressible granular flow”, J. Diff. Equ., 66, pp. 19 – 50.

[543]
Schiller, L., and Naumann, A. 1933. “Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung”, VDI Zeits, 77(12), pp. 318 – 320.

[544]
Shaver, D.R., and Podowski, M.Z., 2015. “Modeling of interfacial forces for bubbly flows in subcooled boiling conditions”, Transactions of the American Nuclear Society (Proc. of ANS Winter Meeting), 113, pp. 1368–1371.

[545]
Simonnet M., Gentric, G., Olms, E. and Midoux, N. 2007. “Experimentation determination of the drag coefficient in a swarm of bubbles”, Chem. Eng. Sci., 62, pp. 858 – 866.

[546]
Sirignano, W. A. 1999. "Fluid dynamics and transport of droplets and sprays", Cambridge University Press, Cambridge

[547]
Spalding, D. B. 1960. "A standard formulation of the steady convective mass transfer problem", Int. J. Heat Mass Transfer, 1, 192 – 207

[548]
Strubelj, L., Tiselj, I., and Mavko, B. 2009. "Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model" International Journal of Heat and Fluid Flow, 30 (4), pp. 741 – 750.

[549]
Strubelj, L., and Tiselj, I. 2010, "Two-fluid model with interface sharpening", International Journal for Numerical Methods in Engineering Vol 85, Issue 5.

[550]
Sugrue, R. M. 2017, "A Robust Momentum Closure Approach for Multiphase Computational Fluid Dynamics Applications", PhD Thesis, Massachusetts Institute of Technology.

[551]
Sussman, M., Samereka, P. and Osher, S. 1994. "A level set approach for computing solutions to incompressible two-phase flows", J. Comput. Phys. 114, pp. 146-159.

[552]
Syamlal, M. and O’Brien, T.J. April 1987. "The derivation of a drag coefficient formula from velocity-voidage correlations" Technical Note, U.S. Department of energy, Office of Fossil Energy, NETL, Morgantown, WV.

[553]
Taghipour, F. Ellis, N. and Wong, C. 2005. "Experimental and computational study of gas-solid fluidized bed hydrodynamics" Chemical Engineering Science, 60(24):6857 – 6867.

[554]
Taylor R., Krishna R., “Multicomponent Mass Transfer”, Wiley, 1993

[555]
Thai-Van, D., Minier, J. P., Simonin, O., Freydier, P., and Olive, J., 1994. "Multidimensional two-fluid model computation of turbulent dispersed two-phase flows", ASME FED, 185:277 – 291.

[556]
Tolubinsky V.I. and Kostanchuk D.M. 1970. “Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling”, Heat Transfer 1970, Preprints of papers presented at the 4th International Heat Transfer Conference, Paris, 5, Paper No. B-2.8

[557]
Tomiyama, A., Kataoka, I., Zun, I., and Sakaguchi, T. 1998. “Drag Coefficients of single bubbles under normal and micro gravity conditions”, JSME International Journal, Series B, 41(2), pp. 472 – 479.

[558]
Tomiyama, A., Tamai, H., Zun, I., and Hosokawa, S. 2002. “Transverse migration of single bubbles in simple shear flows”, Chemical Engineering Science, 57, pp. 1849 – 1858.

[559]
Troshko, A. A. and Hassan, Y. A. 2001. “A two-equation turbulence model of turbulent bubbly flows”, International Journal of Multiphase Flow, 27 pp. 1965 – 2000.

[560]
Tsouris, C. and Tavlarides, L. L. 1994. "Breakage and coalescence model for drops in turbulent dispersions", AIChE Journal, 49 pp. 395 – 406.

[561]
Unal, H.C. 1976. "Maximum bubble diameter, maximum bubble growth time and bubble-growth rate", International Journal of Heat and Mass Transfer, 19 pp. 643 – 649.

[562]
van Driest. 1955. “On Turbulent Flow Near a Wall”, presented at the 1955 Heat Transfer and Fluid Mechanics Institute, Los Angeles, June 23 – 25, 1955.

[563]
van Wachem, B., Schouten, J.C., Krishna, R. and van den Bleek, C.M. 1998. “Eulerian simulations of bubbling behaviour in gas-solid fluidised beds”, Computers Chem. Eng., 22, Suppl. pp. S299 – S306.

[564]
van Wachem, B., Schouten, J.C., van den Bleek, C.M., Krishna, R. and Sinclair, J. L. 2001. “Comparative analysis of CFD models of dense gas-solid systems”, AIChE Journal, 47(5) pp. 1035 – 1051.

[565]
Vikhansky, A. and Splawski, A. 2015. "Adaptive multiply size group method for CFD-population balance modelling of polydisperse flows", The Canadian Journal of Chemical Engineering, Volume 93, Issue 8, Pages: 1327 – 1334.

[566]
Wallis, G. B., "One-Dimensional Two-Phase Flow", Mcgraw-Hill, New York, 1969.

[567]
Wang, D.M. 1994. “Modelling of bubbly flow in a sudden pipe expansion”, Technical Report II-34, BRITE/EuRam Project BE-4098.

[568]
Wang, W., Li, J., 2007. "Simulation of gas-solid two-phase flow by a multi-scale CFD approach - Extension of the EMMS model to the sub-grid level", Chem. Eng. Sci. 62, pp. 208–231.

[569]
Wei, Y. and Morel, C. 2004. “Volumetric interfacial area prediction in upward bubbly two-phase flow”, Int. J. Heat and Mass Transfer, 47, pp. 307 – 328.

[570]
Weisman J. and Pei B.S. 1983. “Prediction of critical heat flux in flow boiling at low qualities”, Int. J. Heat Mass Transfer, 26, No. 10, pp. 1463 – 1477

[571]
Wen, C.Y. and Yu, Y.H. 1966. "Mechanics of fluidization" Chemical Engg. Prog. Symposium Series, 62(2):100 – 111.

[572]
Witt, P.J. and Perry, J.H. 1996. “A Study in Multiphase Modelling of Fluidised Beds”, Computational Techniques and Applications: CTAC95, R. May & A. Easton Eds., World Scientific, pp. 787 – 794.

[573]
Woo, X. Y., Tan, R. B. H., Braatz, R. D., 2009. "Modeling and computational fluid dynamics-population balance equation-micromixing simulation of impinging jet crystallizers", Crystal Growth & Design 9, 156-164.

[574]
Young, L. B. 1980. “Spontaneous Condensation of Steam in Supersonic Nozzles”, Technical Report, University of Cambridge.

[575]
Yu, A. B., and Standish, N. 1987. “Porosity calculations of multi-component mixtures of spherical particles”, Powder Technology, 52, pp. 233 – 241.

[576]
Yu, X., Hendrickson, K., Yue, D.K.P., 2019. “Scale separation and dependence of entrainment bubble-size distribution in free-surface turbulence”, Journal of Fluid Mechanics, 885.

[577]
Zaichik, L.I., Simonin, O., and Alipchenkov, V.M. 2010. "Turbulent collision rates of arbitrary-density particles", Intl. J. Heat and Mass Transfer. 53. pp. 1613 – 1620.

[578]
Zuber, N. 1964. “On the dispersed two-phase flow in the laminar flow regime”, Chemical Engineering Science, 19, pp. 897 – 917.