反应流体参考书目

声学模态分析

[742]
Nicoud, F., Benoit, L., Sensiau, C., and Poinsot, T. 2007."Acoustic Modes in Combustors with Complex Impedances and Multidimensional Active Flames", in AIAA Journal, Vol. 45, No. 2.

[743]
Silva, C. 2007."First Step of Development of a Numerical Tool for Combustion Noise Analysis".Master Internship Report.Ecole Nationale Superieure de l’Aeronautique et de l’Espace.

[744]
André Kaufmann, Franck Nicoud, Thierry Poinsot.2002.Flow forcing techniques for numerical simulation of combustion instabilities.Combustion and Flame, Elsevier, 131 (4), pp.371-385.10.1016/S0010-2180(02)00419-4. hal-00910199.

绝热 PPDF 参考书目

[745]
Jones, W.P.于 1980 年刊登在 Prediction Methods for Turbulent Flow (Ed.W. Kollman)的第 1-45 页,由华盛顿特区Hemisphere, Washington, D.C., pp. 1-45.

[746]
Peters, N. 1986.‘Laminar flamelet concepts in turbulent combustion’, 21st Symp.(Int.) on Combustion, The Combustion Institute, pp. 1231-1250.

[747]
Pitsch, H., Desjardins, O., Balarac, G. and Ihme, M. 2008.“Large-Eddy Simulation of Turbulent Reacting Flows”, Prog.Aerospace Sci., pp. 466–478.

[748]
Veynante D. and Vervisch L. 2002.‘Turbulent Combustion Modeling’ in ‘Progress in Energy and Combustion Science’, Vol. 28, pp. 248-252.

Analytical Jacobian Libraries

[749]
Lu, T. 2012."Computational Tools for Diagnostics and Reduction of Detailed Chemical Kinetics", 2012 Princeton-CEFRC Summer School on Combustion, Princeton University.

Clustering

[750]
Babajimopoulos, 1., Assanis, D. N., Flowers, D. L., Aceves, S. M., Hessel, R. P., "A fully coupled computational fluid dynamics and multi-zone model with detailed chemicalkinetics for the simulation of premixed charge compression ignition engines", Int. Journal of Engine Research, 2005, vol 6 no 5

Coal

[751]
Kobayashi, H., Howard, J.B., and Sarofim, A.F.1977.“Coal Devolatilization at High Temperatures”, 18th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 411.

[752]
Smoot, D.J., and Smith, P.J.1985.“Coal Combustion and Gasification”, The Plenum Chemical Engineering series, New York.

Coherent Flame

[753]
Meneveau, C., and Poinsot, T. 1991 ‘Stretching and quenching of flamelets in premixed turbulent combustion’, Combust.Flame, 86, pp. 311-332.

CVODE

[754]
S.B.Pope, V. Hiremath, S.R.Lantz, Z. Ren and L. Lu (2012) ISAT-CK7: "A Fortran 90 library to accelerate the implementation of combustion chemistry"

http://tcg.mae.cornell.edu/ISATCK7

Dynamic Mechanism Reduction

[755]
T. Lu, C. Law, Proc.Combust.Inst.30 (2005) 1333-1341.

EBU

[756]
B. F. Magnussen and B. H. Hjertager."On mathematical models of turbulent combustion with special emphasis on soot formation and combustion".In 16th Symp.(Int'l.) on Combustion.The Combustion Institute.1976.

Eddy Contact Micromixing

[757]
Forney, L. J., and Nafia, N. 2000.“Eddy Contact Model: CFD Simulations of Liquid Reactions in Nearly Homogeneous Turbulence”, Chem.Eng. Sci., 55(24), pp. 6049-6058.

[758]
Hjertager, L.K., Hjertager, B.H., Solberg, T., 2002.“CFD modelling of fast chemical reactions in turbulent liquid flows”, Computers and Chem.Eng. 26 pp. 507–515.

Eddy Dissipation Concept

[759]
B. F. Magnussen, "The Eddy Dissipation Concept a Bridge between Science and Technology," in ECCOSMAS Thematic Conference on Computational Combustion, June 21-24, 2005.Lisbon, Portugal.

[760]
B.F.Magnussen and B.H.Hjertager 'On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow', 19th AIAA Aerospace Meeting, St. Louis, USA, 1981.

[761]
I. S. Ertesvag and B. Magnussen, "The Eddy Dissipation Turbulence Energy Cascade Model," Combustion Science and Technology, vol.159, pp.213-235, 2000.

FGM

[762]
J.A. van Oijen, L.P.H. de Geoy.Modelling of premixed laminar flames using flamelet-generated manifolds.Combust.Sci.Technol., 161:113, 2000.

[763]
H. Lehtiniemi, F. Mauß, M. Balthasar, and I. Magnusson.Modeling diesel spray ignition using detailed chemistry with a progress variable approach.Combust.Sci. and Tech.178 (10-11) (2006) 1977-1997.

[764]
G. Goldin, Y. Zhang, "A GENERALIZED FGM PROGRESS VARIABLE WEIGHT OPTIMIZATION USING HEEDS" , Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT2017-64446, June 26-30, 2017, Charlotte, NC, USA.

[765]
A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse.A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets.Proceedings of the Combustion Institite 000 (2018) 1-8.

ISAT / Perfectly Stirred Reactor

[766]
Pope, S.B.1997.“Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation”, Combust.Theory and Modelling, 1, pp. 41-63.

Laminar Flame Concept

[767]
R. J. Kee, F. M. Rupley, and J. A. Miller, "Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics" Sandia National Laboratories Report SAND89- 8009, (1990).

Laminar Flame Speed

[768]
Metghalchi, M. and Keck, J.C. 1982 ‘Burning velocities of mixtures of air with methanol, isooctane, and indelene at high pressure and temperature’, Combust.Flame, 48, pp. 191-210.

[769]
Gülder, Ö., 1984.'Correlations of laminar combustion data for alternative S.I. Engine fuels', S.I. Engine fuels, SAE Paper 841000.

[770]
Gülder, Ö.L.1991 ‘Turbulent premixed flame propagation models for different combustion regimes’, Proceedings of The Combustion Institute, Vol.23, pp. 743-750.

[771]
Hirasawa, T., Sung, C.J., Joshi, A., Yang, Z., Wang, H., and Law, C.K.'Determination of Laminar Flame Speeds Using Digital Particle Image Velocimetry: Binary Fuel Blends of Ethylene, n-Butane, and Toluene', Proceedings of the Combustion Institute, 29 (2002) pp. 1427-1434.

[772]
Pessina, V., Berni, F., Fontanesi, S., Stagni, A., and Mehl, M. 'Laminar flame speed correlations of ammonia/hydrogen mixtures at high pressure and temperature for combustion modeling applications', International Journal of Hydrogen Energy, 47 (2022) pp. 25780-25794.

[773]
Verhelst S, T'Joen C, Vancoillie C, Demuyck J. 'A correlation for the laminar burning velocity for use in hydrogen spark ignition engine simulation' , International Journal of Hydrogen Energy, 36 (2011) pp. 957-974.

Non-Adiabatic PPDF Bibliography

[774]
Smoot and P. Smith, Coal Combustion and Gasification, The Plenum Chemical Engineering Series, 1985.

NOx

[775]
Baulch, D. L., Drysdall, D. D., Horne, D. G., and Lloyd, A. C. 1973.Evaluated Kinetic Data for High Temperature Reactions, vols. 1-3.Butterworth.

[776]
De Soete, G. G. 1975.“Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen”, in 15th Symp.(Intl.) on Combustion, pp. 1093-1102.The Combustion Institute.

[777]
Hampartsumian, E., Nimmo, W., Pourkashanian, M., Williams, A., and Missaghi, M. 1993."The Prediction of NOx Emissions from Spray Combustion", Combustion Science and Technology, 93:1, 153-172, DOI: 10.1080/00102209308935287.

Particle Reactions

[778]
Smoot, D.J. and Smith, P.J.1985.“Coal Combustion and Gasification”, The Plenum Chemical Engineering series, New York.

Polymerization

[779]
Pladis and Kiparissides, Chem Eng Sc, 53, No.18, pp 3315, 1998

Reactor Network

[780]
Thakre, P., Veljkovic, I., Lister, V., and Goldin, G., "Modeling of Pollutant Formation in Gas Turbine Combustors Using Fast Reactor Network Model", Proceedings of ASME Turbo Expo 2020 Turbomachinery Technical Conference and Exposition GT2020-14800.

Soot

[781]
Appel, J., Bockhorn, H., and Frenklach, M. (2000) "Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons", Combustion and Flame, 122, pp. 122-136.

[782]
Balthasar, M., Mauss, F., and Wang, H. (2002).“A computational study of particle thermal ionization and its effect on soot mass growth in laminar premixed flames”, Comb.& Flame, 129, pp. 204–216.

[783]
Bilger, R.W. (1988).“The structure of turbulent nonpremixed flames”, Proc.Combust.Inst.23, pp. 475–488.

[784]
Blanquart,G. and Pitsch, H. (2009).“Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model”, Combustion and Flame 156, pp. 1614–1626.

[785]
Brookes, S. J. and Moss, J. B. 1999."Predictions of soot and thermal radiation in confined turbulent jet diffusion flames," Comb.& Flame, 116, pp. 486–503.

[786]
Brown, N., Revzan, K., and Frenklach, M. (1998) "Detailed Kinetic Modeling of Soot Formation in Ethylene/Air Mixtures Reacting in a Perfectly Stirred Reactor," Proc.Combust.Inst., 27, pp. 1573–1580.

[787]
Frenklach, M. (2002) "Reaction Mechanism of Soot Formation in Flames," Phys.Chem.Chem.Phys., 4, pp. 2028–2037.

[788]
Frenklach, M. and Wang, H. (1994) "Detailed Mechanism and Modeling of Soot Particle Formation," in Soot Formation in Combustion: Mechanisms and Models (H. Bockhorn, ed.), Springer-Verlag, New York.

[789]
Kazakov, A. and Frenklach, M. (1998)."Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames", Comb.& Flame, 114, pp. 484-501.

[790]
Kazakov, A., Wang, H. and Frenklach, M. (1995).“Detailed Modeling of Soot Formation in Laminar Premixed Ethylene Flames at a Pressure of 10 Bar”, Comb.& Flame, 100, pp. 111-120.

[791]
Lindstedt, R. P. and Louloudi, S. A. (2005) "Joint-Scalar Transported PDF Modeling of Soot Formation and Oxidation," Proc.Combust.Inst., 30, pp. 775–783.

[792]
Marchal, C. "Modelisation de la Formation et de l'Oxydation des Suies dans un Moteur Automobile".PhD Thèse, Université d’Orléans (déc 2008).

[793]
Mauss, F., Trilken, B., Breitbach, H., and Peters, N. (1994).“Soot Formation in Partially Premixed Diffusion Flames at Atmospheric Pressure”, Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn ed., Springer Verlag, pp. 325-349.

[794]
Mauss, F., Lehtiniemi, H., and Netzell, K. (2007)."Calculating the Soot Particle Size Distribution Function in Turbulent Diffusion Flames Using a Sectional Method," Proc.Combust.Inst., 31, pp. 667–674.

[795]
Modest, Michael F., 2003.Radiative Heat Transfer, Academic Press.

[796]
Muller M.E., "Large Eddy Simulation of Soot Evolution in Turbulent Reacting flows".PhD Thesis, Stanford University (June 2012).

[797]
Nakov, G., Mauss, F., Wenzel, P., Steiner, R. et al., (2010)."Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach," SAE Int. J. Engines 2(2):89–104.

[798]
Netzell, K., "Development and Application of Detailed Kinetic Models for the Soot Particle Size Distribution Function".PhD Thesis, Lund Institute of Technology (Nov 2006).

[799]
Wen, Z., Yun, S., Thomson, M. J., and Lightstone, M. F. (2003)."Modeling soot formation in turbulent kerosene/air jet diffusion flames," Comb.& Flame, 135, pp. 323–340.

Spark Ignitor

[800]
JM Duclos, O.Colin, “Arc and Kernel Tracking Ignition Model for 3D Spark Ignition Engine Calculations” COMODIA 2001, IFP 343-350

[801]
S.Falfari, GM Bianchi “Development of an Ignition Model for SI Engines Simulation”, SAE paper 2007-01-0148

[802]
J.Song, M.Sunwoo “A Modeling and Experimental Study of Initial Flame Kernel Development and Propagation in SI Engines”, SAE paper 2000-01-0960

[803]
StarCD V4.28 Methodology Guide

TFC

[804]
Ranasinghe, C and Malalasekera, W. 2020."Modelling combustion in spark ignition engines with special emphasis on near wall flame quenching", Int. J. Engine Research, 23(1882)

[805]
Zimont, V.L., Polifke, W., Bettelini, M., and Weisenstein, W. 1998.“An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure”, ASME J. Eng. Gas Turbines and Power, 120(3), pp. 526-532.

[806]
Peters, N. 2000.Turbulent Combustion, Cambridge University Press, Cambridge.

[807]
H. Yamashita, M. Shimada and T. Takeno- "A Numerical Study on Flame Stability at the Transition Point of Jet Diffusion Flames" - Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, 1996/pp.27-34, Web Search

Thickened Flame

[808]
Blint, R. 1986.“The relationship of the laminar flame width to flame speed”, Combust.Sci. and Tech., 49:79.

[809]
Charlette, F., Meneveau, C. and Veynante, D. 2002.“Wrinkling Model for LES of Premixed Turbulent Combustion Part I: Non–Dynamic Formulation and Initial Tests”, Combust.Flame, 131:159.

[810]
Colin, O., Ducros, F., Veynante, D. and Poinsot, T. 2000.“A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion”, Phys.Fluids, 12:1843.

[811]
Durand, L. and Polifke, W. 2007.“Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver”, ASME Paper No. GT2007-28188.

[812]
Legier, J.P., Poinsot, T. and Veynante, D. 2000.“Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion”, Proceedings of the Summer Program 2000, Center for Turbulence Research, pp. 157-168.