Numerical Flow Solution Bibliography
[220]
Baaijens, F. P. T. 1998. "Mixed finite element methods for viscoelastic flow analysis: a review, J. Non-Newton Fluid, 79, pp. 361-385.
[221]
Babuska, I. 1973. "The finite element method with Lagrangian multipliers", J. Rheol., 20, pp. 179-192.
[222]
Babuska, I. 1971. " Error-bounds for finite element method" , Numerische Mathematik, 16, pp. 322-333.
[223]
Bird, R.B., Armstrong, R.C, Hassager, Ole. 1987. Dynamics of Polymeric Liquids, I-II. John Wiley & Sons, New York.
[224]
Bird, R.B., Stewart, W.E., and Lightfoot, E.N. 1966. “Transport Phenomena”. John Wiley & Sons, New York.
[225]
Brezzi, F. 1974. " On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers", ESAIM: Mathematical Modelling and Numerical Analysis, 8, pp. 129-151.
[226]
Brooks, A. N. and Hughes, T. J. R. 1982. " Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations" , Comput. Methods in Appl. Mech. Eng., 32, pp. 199-259.
[227]
Burton,T., Jenkins, N., Sharpe, D., Bossanyi, E. 2011. “Wind Energy Handbook”, 2nd ed., Wiley.
[228]
Bush, M. B., Tanner, R. I. and Phan-Thien, N.1985. " A boundary element investigation of extrudate swell", J. Non-Newton. Fluid, 18, pp. 143-162.
[229]
Bush, M. B. and Tanner, R. I. 1983. " Numerical solution of viscous flows using integral equation methods", Int. J. Numer. Meth. Fl., 3, pp. 71-92.
[230]
Chima, R.V., and Liou, M.-S. 2003. “Comparison of the AUSM+ and H-CUSP Schemes for Turbomachinery Applications”, NASA/TM-2003-212457.
[231]
Crochet, M. J. and Walters, K. and Davies, A. R., 1984. “Numerical simulation of non-Newtonian flow”, Elsevier Amsterdam ; New York.
[232]
Darwish M.S. and Moukalled F. 1994. “Normalized Variable and Space Formulation Methodology for High-Resolution Schemes”, Num. Heat Trans., Part B, 26 pp. 79-107.
[233]
Debbaut, B., Marchal, J.M., Crochet, M.J. 1995. "Viscoelastic effects in film
casting", Theoretical, Experimental, and Numerical Contributions to the
Mechanics of Fluids and Solids, pp. 679-698.
[234]
Demirdzic, I., Lilek, Z., and Peric, M. 1993. “A collocated finite volume method for predicting flows at all speeds”, Int. J. for Numerical Methods in Fluids, 16, pp. 1029-1050.
[235]
Demirdzic, I. and Muzaferija, S. 1995. “Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology”, Comput. Methods Appl. Mech. Eng., pp. 1-21.
[236]
Ferziger, J.H. and Peric, M. 2002. “Computational Methods for Fluid Dynamics”, 3rd rev. ed., Springer-Verlag, Berlin.
[237]
Giles, M.B. 1988. “Non-reflecting boundary conditions for the Euler equations”, CFDL Report 88-1, MIT Dept. of Aero. and Astro.
[238]
Giles, M.B. 1990. “Non-reflecting boundary conditions for Euler equation calculations”, AIAA Journal, 28(12):2050-2058.
[239]
Giles, M.B. 1991 “UNSFLO: A numerical method for unsteady flow in turbomachinery”, Gas Turbine Laboratory Report GTL 205, MIT Dept. of Aero. and Astro.
[240]
Gingold, R.A., Moghan, J.J.,
1977. "Smoothed particle hydrodynamics: theory and application to non-spherical
stars ", Monthly Notices of the Royal Astronomical Society, 181, pp.
375-381.
[241]
Giraud, L., d'Humières, D. and Lallemand, P. 1998. “A lattice Boltzmann model for Jeffreys viscoelastic fluid”, Eur. Phys. Lett., 42, pp. 625
[242]
Gnoffo, P. A., Gupta, R. N., and Shinn, J. L. 1989. “Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium”, NASA TP-2867.
[243]
Graboski, M. S. and Daubert, T. E. 1978. “A Modified Soave Equation of State for Phase Equilibrium Calculations: Hydrocarbon Systems”, Ind. Eng. Chem. Process Des. Dev., 17(4), pp. 443-448.
[244]
Graboski, M. S. and Daubert, T. E. 1978. “A Modified Soave Equation of State for Phase Equilibrium Calculations: Systems Containing CO2, H2S, N2, and CO”, Ind. Eng. Chem. Process Des. Dev., 17(4), pp. 448-454.
[245]
Guénette, R. and Fortin, M. 1995. " A new mixed finite element method for computing viscoelastic flows", J. Non-Newton. Fluid, 60, pp. 27-52.
[246]
Gupta, R. N., Lee, K. P., Thompson, R. A., and Yos, J. M. 1991. “Calculations and Curve Fits of Thermodynamic and Transport Properties for Equilibrium Air to 30000 K”, NASA STI/Recon Technical Report N, 92, 11285.
[247]
Hansen, M. 2007. “Aerodynamics of Wind Turbines, 2nd ed. Routledge.
[248]
Hosangadi, A., Sachdev, J. , Sankaran, V. 2012. "Improved Flux Formulations for Unsteady Low Mach Number Flows". ICCFD7 proceedings.
[249]
Howard, A., Tartakovsky, A. 2021. " A conservative level set method for N-phase
flows with a free-energy-based surface tensions model", J. Computational
Physics, 426, 109955.
[250]
Applicability of the
Forchheimer Equation for Non-Darcy Flow in Porous Media”. SPE Journal, March
2008, pp. 112-122.
[251]
Hughes, T. J. R.,Franca, L. P. and Balestra, M. 1986. " A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations", Comput. Methods in Appl. Mech. Eng., 59, pp. 85-99.
[252]
Hughes, T. J. R. and Franca, L. P. 1987. " A new finite element formulation for computational fluid dynamics: VII. The stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces", Comput. Methods in Appl. Mech. Eng., 65, pp. 85-96.
[253]
International Association for the Properties of Water and Steam. 2007. Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, IAPWS Secretariat, Lucerne, Switzerland. (available at www.iapws.org).
[254]
Issa, R. I. , Gosman, A. D., and Watkins, A. P., 1986. "The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme," J. Computational Physics, 62(1).
[255]
Jameson, A., Schmidt, W. and Turkel, E. 1981. “Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes”, AIAA Paper 81-1259.
[256]
Ladyzhenskaya, O. A. 1963. " The Mathematical Theory of Viscous Incompressible Flow" , Gordon and Breach.
[257]
Legat, V., Marchal, J.M. 1992. "Predictions of threedimensional general shape extrudates by an implicit iterative scheme," Int. J. for Numerical Methods in Fluids, 14, 609-625.
[258]
Leonard, B. P. 1991. “The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection”, Comp. Methods in Applied Mechanics and Engineering, 88 pp. 17-74.
[259]
Liou, M.-S. 1996. “A Sequel to AUSM: AUSM+”, J. Comput. Phys., 129: 364-382.
[260]
Liou, M.-S. 2001. “Ten Years in the Making--AUSM-Family”, AIAA 2001-2521.
[261]
Lockwood, B. A. 2012. “Gradient-based Approaches for Sensitivity Analysis and Uncertainty Quantification within Hypersonic Flows”, Ph.D. Dissertation, University of Wyoming.
[262]
Loehmer, R. 2009. “On Limiters for Minimal Vorticity Dissipation”, AIAA 2009-135.
[263]
Lucy, L.B, 1977, "A numerical
approach to the testing of the fission hypothesis.", Astronomical Journal, 82,
pp.1013-1024.
[264]
Lynn, N. and Steinhoff, J. 2007. “Large Reynolds Number Turbulence Modeling with Vorticity Confinement”, AIAA 2007-3965.
[265]
Makkonen, L. 2000. “Models for the growth of rime, glaze, icicles and wet snow on structures.” Phil. Trans. R. Soc. Lond. A, 358, pp. 2913-2939.
[266]
Manwell, J.F., McGowan, J., and Rogers, A. 2009. “Wind Energy Explained: Theory, Design and Application”, 2nd ed. Wiley.
[267]
Mathur, S.R. and Murthy, J.Y. 1997. “Pressure-based method for unstructured meshes”, Numerical Heat Transfer, Part B: Fundamentals, 31(2), pp. 195-214.
[268]
Mathur, S.R. and Murthy, J.Y. 1997. “Pressure boundary conditions for incompressible flow using unstructured meshes”, Numerical Heat Transfer, Part B: Fundamentals, 32(3), pp. 283-298.
[269]
Monaghan, J.J. 1994. "Simulating
Free Surface Flows with SPH", Journal of Computational Physics, 110, pp.
399-406.
[270]
Morris, J.P., Fox, J.P., and Zhu,
J., 1997. "Modeling Low Reynolds Number Incompressible Flows Using SPH", Journal
of Comp. Physics, 136, pp. 214-226.
[271]
Murthy, J. Y. 2002. “Numerical Methods in Heat, Mass and Momentum Transfer”, Draft Notes, School of Mechanical Engineering, Purdue University.
[272]
Oliveira, P. J., Pinho, F. T. and Pinto, G. A., G. 1998. “Numerical simulation of non-linear elastic flows with a general collocated finite-volume method”, J. Non-Newton Fluid, 79, pp. 1-43.
[273]
Olsson, E., Kreiss, G., and Zahedi, S. 2007. " A conservative level set method
for two phase flow", J. Computational Physics, 225(1), pp. 225-246.
[274]
Olsson, E., Kreiss, G., and Zahedi, S. 2007. " A conservative level set method
for two phase flow II", J. Computational Physics, 225(1), pp. 785-807.
[275]
Osher S., Sethian, J. 1998. "Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations", J. Computational Physics, 79,
pp. 12-49-+.
[276]
Peric, M., Kressler, R., and Scheuerer, G. 1988. “Comparison of finite-volume numerical methods with staggered and colocated grids”, Computers & Fluids, 16(4), pp. 389-403.
[277]
Poling, B. E., Prausnitz, J. M., and O'Connell, J. P., “The Properties of Gases & Liquids”, 5th Ed., McGraw-Hill, 2001.
[278]
Rajagopalan, D., Armstrong, R.C., Brown, R.A. 1990. "Finite element methods for calculation of steady viscoelastic flow using constitutive equations with a Newtonian viscosity", J. Non-Newtonian Fluid Mech., 36, pp 159-192.
[279]
Rajagopalan, R.G. 1993. “Three Dimensional Analysis of a Rotor in Forward Flight”, Journal of the American Helicopter Society, Vol. 38.
[280]
Reid, R. C., Prausnitz, J. M., and Poling, B. E. 1987. “The Properties of Gases & Liquids”, 4th Ed., McGraw-Hill.
[281]
Ruschak, K. J. 1980. "A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators",International Journal for Numerical Methods in Engineering, 15:5, pp 639-648.
[282]
Saxer, A.P. 1992. “A numerical analysis of three-dimensional inviscid rotor/stator interactions using non-reflecting boundary conditions”, Ph.D. Thesis. MIT Dept. of Aero. and Astro.
[283]
Saad, Y. 2003. “Iterative Methods for Sparse Linear Systems”, 2nd ed., Society for Industrial and Applied Mathematics
[284]
Shakib, F., Hughes, T. J. R. and Johan, Z. 1991. " Second World Congress on Computational Mechanics A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations" , Comput. Methods in Appl. Mech. Eng., 89, pp. 141-219.
[285]
Shakib Tezduyar_Rev, Tezduyar_PSPG
[286]
Skillen, A., Lind, S., Stansby, P.K., and Rogers, D.B. 2013. “Incompressible
smoothed particle hydrodynamics (SPH) with reduced temporal noise and
generalised Fickian smoothing applied to body–water slam and efficient wave–body
interaction”, Comput. Methods in Appl. Mech. Eng., 265, pp. 163-173.
[287]
Soave, G. 1972. “Equilibrium Constants from a Modified Redlich–Kwong Equation of State”, Chem. Eng. Sci., 27, pp. 1197-1203.
[288]
Steinhoff, J., Lynn, N. and Wang, L. 2005. “Computation of High Reynolds Number Flows Using Vorticity Confinement: I. Formulation”, UTSI Preprint.
[289]
Tezduyar, T. E. and Osawa, Y. 2000. " Finite element stabilization parameters computed from element matrices and vectors" , Comput. Methods in Appl. Mech. Eng., 190, pp. 411-430.
[290]
Turkel, E. 1987. “Preconditioned methods for solving the incompressible and low speed compressible equations”, Journal of Computational Physics, 72, pp. 277-298.
[291]
Vergnaud, A., Oger, G., Le Touze, D., DeLeffe, M., and Chiron, L.
2022.“Accurate, robust and efficient surface tension and contact angle models
for single-phase flows using SPH”, J. Computer Meth. in Applied Mechanics and
Eng, 389.
[292]
Venkatakrishnan, V. 1993.“On the
Accuracy of Limiters and Convergence to Steady State Solutions”, 31st Aerospace
Sciences Meeting.
[293]
Weiss,
J.M., Maruszewski, J.P., and Smith, W.A. 1999. “Implicit solution of
preconditioned Navier-Stokes equations using algebraic multigrid”, AIAA Journal,
37(1), pp. 29-36.
[294]
Weiss,
J.M., and Smith, W.A. 1995. “Preconditioning applied to variable and constant
density flows”, AIAA Journal, 33(11), pp. 2050-2057.
[295]
Xue, S.-C.,Phan-Thien, N. and
Tanner, R. I. 1995. “Numerical study of secondary flows of viscoelastic fluid in
straight pipes by an implicit finite volume method”, J. Non-Newton Fluid, 59,
pp. 191-213.
[296]
Yang, Z. et al.
2000. “Recent Improvements to a Hybrid Method for Rotors in Forward Flight”,
AIAA Conference Reno.