Real Gas Models Reference

Real Gas models allow you to take into account non-ideal behavior such as compressibility effects, variable specific heat, van der Waals forces, and non-equilibrium thermodynamic effects.

The following Real Gas models are available in STAR-CCM+:

  • Peng-Robinson—for use at high pressures and low temperatures
  • Redlich-Kwong—for use at high pressures and low temperatures
  • Soave-Redlich-Kwong—for more complex treatment of temperature
  • Modified Soave-Redlich-Kwong—designed to handle phase equilibrium calculations for non-polar molecules ([173], [174])
  • Van der Waals—designed to handle intermolecular attractive forces
  • Equilibrium Air—for high temperatures, to handle effects such as ionization. This model is useful for the simulation of hypersonic flows, such as nozzle flows or atmospheric re-entry.
  • IAPWS-IF97 Steam (for steam)—for this model, the material properties follow the IAPWS-IF97 specification [25], [26], [27].
Model Names and Abbreviations Peng-Robinson PR
Redlich-Kwong RK
Soave-Redlich-Kwong SRK
Modified Soave-Redlich-Kwong mSRK
Van der Waals VdW
Equilibrium Air EA
IAPWS-IF97 (Steam) IAPWS-s
Theory
Provided by Continua > [physics continuum] > Models > Real Gas Equation of State
Example Node Path Continua > Physics 1 > Models > Peng-Robinson
Requires Equation of State: Real Gas
Properties
Activates Model Controls (child nodes)
Materials See Real Gas Material Properties.
Monitors Vib. Energy
Field Functions See Field Functions.

Real Gas Material Properties

This table shows which material properties are used by which real gas models.

PR RK SRK mSRK VdW EA IAPWS-s
Acentric Factor ω
Critical Pressure p c
Critical Temperature T c
Fugacity Coefficient
Molecular Weight
Saturation Pressure
Saturation Temperature
Specific Heat
Speed of Sound
Acentric Factor
Critical Pressure
Displays the model constant p c (read-only).
Critical Temperature
Displays the model constant T c (read-only).
Fugacity Coefficient
The ratio of the fugacity and the partial pressure of gas mixture component i . ϕ i in Eqn. (81). The coefficient is 1 for ideal gases.
Molecular Weight
Specifies the molecular weight M .
Saturation Pressure
Specifies the saturation pressure.
Saturation Temperature
Specifies the temperature for the corresponding saturation pressure at which the liquid boils into its vapor phase.
Specific Heat
Specifies the fluid-specific heat capacity C p .
Method Corresponding Method Node
Constant (SRK, mSRK, PR, RK, VdW)
Constant
Specifies the specific heat using a scalar profile value.
Equilibrium Air (EA)
Equilibrium Air
This node provides no properties.
Fully Excited (TNEq)
Fully Excited
This node provides no properties.
Gas Kinetics (SRK, mSRK, PR, RK, VdW)

Uses the Gas Kinetics Method for Specific Heat.

Gas Kinetics
This node provides no properties.

Selecting the Gas Kinetics method adds the following material properties:

Electronic Partition Function
Specifies the partition function for electronic energy using a Number of Modes with Characteristic Temperatures θ i and Mode Degeneracies g i . See Q e l in Eqn. (163).
Molecule Type
Describes the molecular structure using the following values:
  • 0: atom
  • 1: linear molecule
  • 2: non-linear molecule
Standard State Temperature
Specifies the temperature at which the standard state of the fluid is defined. The Standard State Temperature is used to calculate enthalpy. The enthalpy value varies with Standard State Temperature, but in direct proportion, so differences in enthalpy remain the same for different values of Standard State.
Vibrational Partition Function
For polyatomic molecules, specifies the partition function for vibrational energy using a Number of Modes with Characteristic Temperatures θ i and Mode Degeneracies g i . See Q v i b in Eqn. (163).
IAPWS-IF97 (IAPWS-s)
IAPWS-IF97
This node provides no properties.
Polynomial in T (PR, RK, SRK, mSRK, VdW)
Polynomial in T
See Using Polynomial in T.

Selecting the Polynomial in T method adds the following material property:

Standard State Temperature
As for Gas Kinetics.
Table, Cp(T) (PR, RK, SRK, mSRK, VdW)

Tabulates specific heat as a function of temperature.

Table, Cp(T)
See Using Table(T).
Thermodynamic Polynomial Data (SRK, mSRK, PR, RK, VdW)
Thermodynamic Polynomial Data
See Using Thermodynamic Polynomial Data.
Speed of Sound
Specifies the rate of acoustic propagation in the medium using one of the following methods:
Method Corresponding Method Node
Equilibrium Air (EA)
Equilibrium Air
This node provides no properties.
IAPWS-IF97 (IAPWS-s)
IAPWS-IF97
This node provides no properties.

Field Functions

The following table shows which field functions become available for which real gas model:

PR RK SRK mSRK VdW EA IAPWS-s
Compressibility Factor
Critical Pressure
Critical Temperature
Entropy
Entropy Function
Gas Constant
IAPWS Region ID
Mach Number
Molecular Weight
Ratio of Specific Heats
Real Gas Specific Heat
Reduced Pressure
Reduced Temperature
Relative Mach Number
Saturation Pressure
Saturation Temperature
Speed of Sound
可压缩性因子
表示实际气体与理想气体的偏差量,表示为 Z = p / ( ρ R T ) 。通常,此因子取值大约为 1。

对于平衡空气模型,可压缩性因子表示离解度。这并非理想行为,但值的变化范围更广(大约介于 1 和 6 之间)。Eqn. (686) 中给出了平衡空气模型的简化公式。

临界压力
表示为 p c
临界温度
表示为 T c
Entropy
See Entropy.
Entropy Function
See Entropy Function.
气体常数
单位气体常数。
IAPWS 区域 ID
Simcenter STAR-CCM+ 针对特定的 IAPWS 有效区域计算的数据。
马赫数
局部马赫数。
分子量
为材料指定的分子量。
比热比
表示为:

γ = C p C v = C p ( C p - R )

其中 C p 为比热 J/(kg K), R 为单位气体常数 J/(kg K)。

Real Gas Specific Heat
The value of specific heat at constant pressure of the real gas. This field function accounts for the effects of variations in both temperature and pressure by including the departure from the ideal gas value. The last three terms on the right-hand side of Eqn. (192) give the departure from ideal:
1. EQUATION_DISPLAY
C p = C p 0 + T v ( 2 P T 2 ) v d ν T ( P T ) v 2 ( P v ) T - 1 - R
(192)
折算压力
表示为 p r = p / p c
折算温度
表示为 T r = T / T c
相对马赫数
饱和压力
为材料指定的饱和压力。
饱和温度
为材料指定的饱和温度。
声速
介质中的声音传播速率。