本文演示利用Fluent的电池模型仿真计算jellyroll电池。
“jellyroll”技术指的是通过将多层材料平面层压成薄片之后再卷起来塞进一个圆柱形的微型容器里。这种技术可以在不需要加大电池尺寸的基础上将电池中的电极利用率最大化。与此同时,电池内的电子也可在电池内自由活动,且不会对其他电子的活动造成任何影响。
1 问题描述
算例几何模型如下图所示。

注意到几何模型被一层螺旋形无厚度壁面分割开。

计算网格如下图所示。

2 Fluent设置
-
以3D、Double Precision方式启动Fluent -
利用菜单File → Read → Case… 读取网格文件jelly_roll-16.msh.gz
2.1 General设置
-
采用瞬态计算

2.2 Models设置
-
激活能量方程

-
右键选择节点Battery Model ,点击弹出菜单项Edit… 打开电场模型设置对话框

-
如下图所示设置Battery Model对话框中Model Options标签页下的参数 -
激活选项Enable Battery Model -
选择Solution Method下的选项MSMD -
选择E-Chemistry Models 下的选项NTGK Empirical Model -
激活选项Enable Joule Heat in Active Zones -
设置Nominal Cell Capacity 为30 ah -
指定C-Rate 为1 -
其他参数保持默认设置

-
进入Conductive Zones 标签页,进行如下设置 -
设置 Active Components
为e_zone -
设置 Passive Components
为tab-n_zone与tab_p_zone

-
进入 Electric Contacts
标签页,进行如下设置 -
指定 Negative Tab
为tab-n -
指定 Positive Tab
为tab-p

-
进入 Model Parameters
标签页,指定Reference Capacity
为14.6 ah,其他参数保持默认设置

-
点击OK 按钮关闭对话框
2.3 Materials设置
-
新建Solid类型的材料介质 -
修改其名称为e-mat -
指定 Thermal Conductivity
为20 W/(m K) -
设置 Electrical Conductivity
为define-per-uds

-
设置 Electrical Conductivity
的两个UDS均为1e6 S/m

-
创建新材料介质tabmat,材料参数如下图所示

2.4 计算区域设置
-
指定区域 e-zone
的材料介质为e-mat

-
设置区域 tab_p_zone
的材料介质为tabmat

-
指定区域 tab-n_zone
的材料介质为tabmat

2.5 边界条件设置
-
设置边界 bot_wall
的热参数 -
指定边界条件类型为Convection -
设置 Heat Transfer Coefficient
为5 -
设置 Free Stream Temperature
为300 K

-
将边界条件 bot_wall
的参数拷贝到其他边界,如下图所示

-
指定 tab-n
边界为默认的绝热边界

-
将 tab-n
边界参数拷贝到tab_p

2.6 参考值设置
-
如下图所示设置参考值

2.7 求解方法
-
设置Solution Methods,如下图所示

2.8 求解控制
-
取消流动方程的求解,如下图所示

2.9 收敛残差设置
-
取消收敛残差控制

2.10 物理量监测
-
监测电势

-
监测区域温度

2.11 初始化设置
-
采用标准初始化

2.12 求解参数
-
设置时间步数100,时间步长30s进行计算

3 计算结果
-
区域内最高温度随时间变化曲线

-
电压随时间变化曲线

-
3000 s时刻温度分布

-
3000 s时刻SOC分布

相关文件下载链接:
链接:https://pan.baidu.com/s/1TwSjTbNHlbUeQuVpbVV3Vg 提取码:1glp
”
本篇文章来源于微信公众号: CFD之道
评论前必须登录!
注册