本文描述利用Julia计算二维非线性对流问题。
二维非线性对流控制方程为:
这里时间项采用向前差分,空间项采用向后差分,离散方程可写成以下格式:
式中,i为x方向角标,j为y方向角标,n为时间项角标。
可得待求项:
采用初始条件:
边界条件:
程序代码
using PyPlot
nx = 101
ny = 101
nt = 80
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = 0.2
dt = sigma * dx
x = range(0, 2, length=nx)
y = range(0, 2, length=ny)
u = ones(ny, nx)
v = ones(ny, nx)
un = ones(ny, nx)
vn = ones(ny, nx)
s = floor(Int, 0.5 / dy)
e = floor(Int, 1 / dy)
u[s:e,s:e] .= 2
v[s:e,s:e] .= 2
显示初始化分布。
PyPlot.surf(x,y,u,cmap=ColorMap("coolwarm"))
PyPlot.show()
初始化分布如下图所示。
进行迭代计算。
for n in 1:nt
un = copy(u)
vn = copy(v)
u[2:end,2:end] = un[2:end,2:end] - (un[2:end,2:end] .* (c * dt / dx * (un[2:end,2:end] - un[2:end,1:end - 1]))) - (vn[2:end,2:end] .* (c * dt / dy * (un[2:end,2:end] - un[1:end - 1,2:end])))
v[2:end,2:end] = vn[2:end,2:end] - (un[2:end,2:end] .* (c * dt / dx * (vn[2:end,2:end] - vn[2:end,1:end - 1]))) - (vn[2:end,2:end] .* (c * dt / dy * (vn[2:end,2:end] - vn[1:end - 1,2:end])))
u[1,:] .= 1;
u[end,:] .= 1;
u[:,1] .= 1;
u[:,end] .= 1;
v[1,:] .= 1;
v[end,:] .= 1;
v[:,1] .= 1;
v[:,end] .= 1;
end
fig = figure(figsize=(11, 7), dpi=100)
PyPlot.surf(x,y,u,cmap=ColorMap("coolwarm"))
PyPlot.show()
计算结果显示。
-
x方向速度分布
-
y方向速度分布
完整代码如下所示。
using PyPlot
nx = 101
ny = 101
nt = 80
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = 0.2
dt = sigma * dx
x = range(0, 2, length=nx)
y = range(0, 2, length=ny)
u = ones(ny, nx)
v = ones(ny, nx)
un = ones(ny, nx)
vn = ones(ny, nx)
s = floor(Int, 0.5 / dy)
e = floor(Int, 1 / dy)
u[s:e,s:e] .= 2
v[s:e,s:e] .= 2
# PyPlot.surf(x,y,u,cmap=ColorMap("coolwarm"))
# PyPlot.show()
for n in 1:nt
un = copy(u)
vn = copy(v)
u[2:end,2:end] = un[2:end,2:end] - (un[2:end,2:end] .* (c * dt / dx * (un[2:end,2:end] - un[2:end,1:end - 1]))) - (vn[2:end,2:end] .* (c * dt / dy * (un[2:end,2:end] - un[1:end - 1,2:end])))
v[2:end,2:end] = vn[2:end,2:end] - (un[2:end,2:end] .* (c * dt / dx * (vn[2:end,2:end] - vn[2:end,1:end - 1]))) - (vn[2:end,2:end] .* (c * dt / dy * (vn[2:end,2:end] - vn[1:end - 1,2:end])))
u[1,:] .= 1;
u[end,:] .= 1;
u[:,1] .= 1;
u[:,end] .= 1;
v[1,:] .= 1;
v[end,:] .= 1;
v[:,1] .= 1;
v[:,end] .= 1;
end
fig = figure(figsize=(11, 7), dpi=100)
PyPlot.surf(x,y,u,cmap=ColorMap("coolwarm"))
PyPlot.show()
本篇文章来源于微信公众号: CFD之道
评论前必须登录!
注册